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Abstract Double substrate enzyme kinetics has a leading role for product quantifi-
cation and optimization in different chemical and biochemical sectors. Mathematical
approach for controlling these reactions in different stages by suitable parameters
adds a new dimension in this interdisciplinary field of research. Applying control
theoretic approach in the reversible backward stages of double substrate enzymatic
model, time economization with regard to product formation is significant. In this
article, we formulate a double substrate mathematical model of enzymatic dynamical
reaction system with control measures with a view to observe the effect of changes of
these measures with respect to the concentration of substrates, enzyme, complexes and
finally product. Here, Pontryagin Minimum Principle is used for observing the effect
of control measures in the system dynamics with the help of Hamiltonian. We compare
the relevant numerical solutions for the substrates, enzyme, complexes and product
concentration profile for a specified time interval with respect to control factors.

Keywords Substrate · Product · Enzyme kinetics · Non-linear reaction equation ·
Pontryagin Minimum Principle

1 Introduction

Controlling enzymatic reactions in the field of chemical kinetics generates quality
product with time economization. Identifying control parameters is thus significant
towards formation of product. Chemical kinetics, with the help of biocatalyst like
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enzyme, plays an important role in this aspect. For smooth completion of reaction,
enzyme is needed as it acts as a catalyst which increases the rate of a reaction by lower-
ing the free energy of activation of the reaction and gives product without forming any
side products. The most important features of enzyme are catalytic power, specificity,
regulation and time saving. In the dynamics of enzymatic reaction, enzyme binds tar-
get molecules or substrates. This binding occurs through the active sites of enzymes
which is the most dynamic part of an enzyme, where substrates bind and undergo a
chemical reaction.

Enzymatic reactions with single substrate or double substrate creates a lot of atten-
tion in chemical and biochemical reactions. Among them, double substrate enzymatic
kinetic model is more purposeful and applicable. Mathematicians made a significant
contribution in this system dynamics for optimization and quantification of product.
Introduction of enzyme kinetics with a mathematical bent is elaborately discussed
in various books [1–3] and [4]. Dual substrate enzyme kinetic model with control
approach glorifies a new dimension of thinking towards chemical engineers, math-
ematicians, doctors and other academicians relating to the interdisciplinary field of
research. So mathematical analysis has an important role in enzymatic reaction envi-
ronment and helps us to realize the evaluation of control parameters, optimum control
of reaction conditions and product optimization in relation to kinetically controlled
enzymatic systems. So, mathematical modeling as a reaction engineering principle
has been finding a considerable role in enzymatic reactions [5,6] and it is growing in
a significant way with the use of bio-catalysis.

The distinctive feature of enzyme kinetics is the formation of enzyme-substrate
complex of different nature. In 1902, Brown [7] proposed the existence of an enzyme-
substrate complex in a purely kinetic context with a fixed lifetime to form the product.
This was the first time that the existence of the complex was proposed in an enzymatic
dynamics. Later, this was studied in various disciplines led by the pioneer work of
Sharpe and Lotka [8] and Volterra [9] in Epidemiology and Ecology. So enzyme
kinetics based on mathematical foundation has an emerging role in the area of double
substrate enzymatic system considering control approach.

In our consideration of the enzyme kinetics in this research article, an approach
for the development of the enzyme kinetic model with control parameters in different
stages of reaction dynamics is introduced. The product formation with a single enzyme
by dual substrate is adopted by considering introduction of substrate in the sequence
of reactions. With this view, we are trying to establish that by adopting effective
control measures in the reversible backward successive stages, time for consumption
of substrate is much less as well as product formation will be cost effective.

2 The basic assumptions and formulation of the mathematical model

Here, we are introducing an enzyme kinetic model with two types of substrates and a
single enzyme. The kinetic reaction is represented by the following schematic diagram:

E + S1
k1�

k−1
E S1 + S2

k2�
k−2

E S1S2
k3−→E + P.
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Here S1 and S2 are two substrates and E is the enzyme. C1 i.e., E S1 and C2 i.e.,
E S1S2 are the two intermediate enzyme-substrate complexes and P is the product.
Here k1 and k2 are the rate constants of the formation of the complexes C1 and C2
respectively and k3 is the catalysis rate constant. The rate constant for backward
reaction of the complexes C1 and C2 are k−1 and k−2 respectively. In this model, one
mole of substrate combining with one mole of enzyme forms one mole of enzyme-
substrate complex C1. This complex (C1) may decompose back into enzyme E and
unmodified substrate S1 or may combine with substrate S2 to form enzyme-substrate
complex C2. This complex (C2) produces the product P or may decompose back into
C1 and S2 or E S2 and S1. Here we assume the first one on the basis of the assumption
that the reaction between E and S1 is faster than that of E and S2 and hence the binding
of E and S1 is much stronger than that of E and S2.

Let us assume that s1, s2, ek, c1, c2 and p for [S1], [S2], [E], [C1], [C2] and [P]
respectively, where [ ] represents the concentration of a substance. From the Law of
Mass Action, the set of nonlinear differential equations describing the above enzymatic
reaction is as follows:

ds1

dt
= −k1eks1 + k−1c1,

ds2

dt
= −k2c1s2 + k−2c2,

dek

dt
= −k1eks1 + k−1c1 + k3c2,

dc1

dt
= k1eks1 − k−1c1 − k2c1s2 + k−2c2,

dc2

dt
= k2c1s2 − k−2c2 − k3c2,

dp

dt
= k3c2, (1)

with initial conditions

s1(0) = s10, s2(0) = s20, e(0) = e0,

c1(0) = 0, c2(0) = 0 and p(0) = 0, (2)

where k1, k2, k3, k−1, k−2, s10, s20 and e0 are positive constants.
Here in this paper, we have introduced two control parameters u1 and u2. u1 is

introduced in the first stage of backward reaction and u2 in the second stage. The
corresponding reaction mechanism is given by

E + S1
k1�

k−1,u1
E S1 + S2

k2�
k−2,u2

E S1S2
k3−→E + P.

With these two control parameters taking into consideration and from the Law of
Mass Action, we have the following system of nonlinear differential equations:
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ds1

dt
= −k1eks1 + k−1(1 − u1(t))c1,

ds2

dt
= −k2c1s2 + k−2(1 − u2(t))c2,

dek

dt
= −k1eks1 + k−1(1 − u1(t))c1 + k3c2,

dc1

dt
= k1eks1 − k−1(1 − u1(t))c1 − k2c1s2 + k−2(1 − u2(t))c2,

dc2

dt
= k2c1s2 − k−2(1 − u2(t))c2 − k3c2,

dp

dt
= k3c2, (3)

where

s1(0) = s10, s2(0) = s20, e(0) = e0,

c1(0) = 0, c2(0) = 0 and p(0) = 0, (4)

with k1, k2, k3, k−1, k−2, s10, s20 and e0 are positive constants and 0 ≤ ui ≤ 1 for
i = 1, 2.

3 Theoretical study of the system

Here we want to maximize the product p, so that we define the objective function for
the minimization problem as,

J (u1, u2) =
t f∫

ti

[
Au2

1(t) + Bu2
2(t) − N p2(t)

]
dt (5)

subject to the state system (3). Here A, B are the weight constant on the benefit of the
cost of production and N is the penalty multiplier. The object is to attain the optimal
control u∗ = (u∗

1, u∗
2) such that

J (u∗
1, u∗

2) = min(J (u1, u2) : (u1, u2) ∈ U ) where U = U1 × U2,

U1 = (
u1(t) : u1 is measurable and 0 ≤ u1 ≤ 1, t ∈ [ti , t f ]

)
and

U2 = (
u2(t) : u2 is measurable and 0 ≤ u2 ≤ 1, t ∈ [ti , t f ]

)
.

Here we use “Pontryagin Minimum Principle” [10] to obtain the optimal control u∗.

3.1 Dynamics of the optimal system

For optimal control of the system, we define the Hamiltonian as follows:
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H = Au2
1(t) + Bu2

2(t) − N p2(t)

+ξ1[−k1eks1 + k−1(1 − u1(t))c1]
+ξ2[−k2c1s2 + k−2(1 − u2(t))c2]
+ξ3[−k1eks1 + k−1(1 − u1(t))c1 + k3c2]
+ξ4[k1eks1 − k−1(1 − u1(t))c1 − k2c1s2 + k−2(1 − u2(t))c2]
+ξ5[k2c1s2 − k−2(1 − u2(t))c2 − k3c2]
+ξ6[k3c2]. (6)

The corresponding adjoint equations are given by,

dξ1

dt
= −∂ H

∂s1
,

dξ2

dt
= −∂ H

∂s2
,

dξ3

dt
= −∂ H

∂ek
,

dξ4

dt
= −∂ H

∂c1
,

dξ5

dt
= −∂ H

∂c2
,

dξ6

dt
= −∂ H

∂p
,

which give,

dξ1

dt
= k1ek(ξ1 + ξ3 − ξ4),

dξ2

dt
= k2c1(ξ2 + ξ4 − ξ5),

dξ3

dt
= k1s1(ξ1 + ξ3 − ξ4),

dξ4

dt
= −k−1(1 − u1(t))(ξ1 + ξ3 − ξ4) + k2s2(ξ2 + ξ4 − ξ5),

dξ5

dt
= −k−2(1 − u2(t))(ξ2 + ξ4 − ξ5) − k3(ξ3 − ξ5 + ξ6),

dξ6

dt
= 2N p. (7)

Using “Pontryagin Minimum Principle”, the unconstrained optimal control vari-
ables u∗

1 and u∗
2 satisfy

∂ H

∂u∗
1

= ∂ H

∂u∗
2

= 0.

Now, the Hamiltonian can also be written as,

H = Au2
1(t) + ξ1k−1(1 − u1(t))c1 + ξ3k−1(1 − u1(t))c1

−ξ4k−1(1 − u1(t))c1 + Bu2
2(t) + ξ2k−2(1 − u2(t))c2

+ξ4k−2(1 − u2(t))c2 − ξ5k−2(1 − u2(t))c2

+terms wi thout u1 and u2.
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Taking partial derivative of the above expression of H with respect to u1 and u2
simultaneously, we have the following results:

∂ H

∂u∗
1

= 2Au∗
1 − k−1c1(ξ1 + ξ3 − ξ4) = 0,

∂ H

∂u∗
2

= 2Bu∗
2 − k−2c2(ξ2 + ξ4 − ξ5) = 0.

Thus for the optimal control, we get

u∗
1(t) = k−1c1(ξ1 + ξ3 − ξ4)

2A
,

u∗
2(t) = k−2c2(ξ2 + ξ4 − ξ5)

2B
.

Due to the boundedness of the standard control, we conclude for the control u1:

u∗
1(t) =

⎧⎪⎪⎨
⎪⎪⎩

0,
k−1c1(ξ1+ξ3−ξ4)

2A ≤ 0,

k−1c1(ξ1+ξ3−ξ4)
2A , 0 <

k−1c1(ξ1+ξ3−ξ4)
2A < 1,

1,
k−1c1(ξ1+ξ3−ξ4)

2A ≥ 1.

Hence the compact form of u∗
1(t) is

u∗
1(t) = max

(
0, min

(
1,

k−1c1(ξ1 + ξ3 − ξ4)

2A

))
.

In a similar way we can have the compact form of u∗
2(t) as

u∗
2(t) = max

(
0, min

(
1,

k−2c2(ξ2 + ξ4 − ξ5)

2B

))
.

3.1.1 Uniqueness of the optimal control

Let us suppose that, (s1, s2, ek, c1, c2, p, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) and (s̄1, s̄2, ēk, c̄1, c̄2, p̄,

ξ̄1, ξ̄2, ξ̄3, ξ̄4, ξ̄5, ξ̄6) are two solutions of the system (3), (7).
We consider, s1 = eλt p1, s2 = eλt p2, ek = eλt p3, c1 = eλt p4, c2 = eλt p5, p =

eλt p6, ξ1 = e−λt q1, ξ2 = e−λt q2, ξ3 = e−λt q3, ξ4 = e−λt q4, ξ5 = e−λt q5 and
ξ6 = e−λt q6.

Similarly, s̄1 = eλt p̄1, s̄2 = eλt p̄2, ēk = eλt p̄3, c̄1 = eλt p̄4, c̄2 = eλt p̄5, p̄ =
eλt p̄6, ξ̄1 = e−λt q̄1, ξ̄2 = e−λt q̄2, ξ̄3 = e−λt q̄3, ξ̄4 = e−λt q̄4, ξ̄5 = e−λt q̄5 and
ξ̄6 = e−λt q̄6.
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We now assume that,

u1 = max

(
0, min

(
1,

k−1c1(ξ1 + ξ3 − ξ4)

2A

))
,

u2 = max

(
0, min

(
1,

k−2c2(ξ2 + ξ4 − ξ5)

2B

))
,

ū1 = max

(
0, min

(
1,

k−1c̄1(ξ̄1 + ξ̄3 − ξ̄4)

2A

))
and

ū2 = max

(
0, min

(
1,

k−2c̄2(ξ̄2 + ξ̄4 − ξ̄5)

2B

))
.

Then we have the following two inequalities,

t f∫

ti

(u1 − ū1)
2 dt ≤ C̃1

(
k−1

2A

)2
t f∫

ti

[
|q1 − q̄1|2 + |q3 − q̄3|2 + |q4 − q̄4|2

]
dt,

t f∫

ti

(u2 − ū2)
2dt ≤ C̃2

(
k−2

2B

)2
t f∫

ti

[
|q2 − q̄2|2 + |q4 − q̄4|2 + |q5 − q̄5|2

]
dt. (8)

Substituting s1 = eλt p1, s2 = eλt p2, ek = eλt p3, c1 = eλt p4, c2 = eλt p5,
p = eλt p6, ξ1 = e−λt q1, ξ2 = e−λt q2, ξ3 = e−λt q3, ξ4 = e−λt q4, ξ5 = e−λt q5 and
ξ6 = e−λt q6 in (3) and (7) we have,

ṗ1 + λp1 = −k1eλt p1 p3 + k−1 p4(1 − u1),

ṗ2 + λp2 = −k2eλt p2 p4 + k−2 p5(1 − u2),

ṗ3 + λp3 = −k1eλt p1 p3 + k−1 p4(1 − u1) + k3 p5,

ṗ4 + λp4 = k1eλt p1 p3 − k−1 p4(1 − u1) − k2eλt p2 p4 + k−2 p5(1 − u2),

ṗ5 + λp5 = k2eλt p2 p4 − k−2 p5(1 − u2) − k3 p5,

ṗ6 + λp6 = k3 p5,

q̇1 − λq1 = k1eλt p3(q1 + q3 − q4),

q̇2 − λq2 = k2eλt p4(q2 + q4 − q5),

q̇3 − λq3 = k1eλt p1(q1 + q3 − q4),

q̇4 − λq4 = −k−1(1 − u1)(q1 + q3 − q4) + k2 p2eλt (q2 + q4 − q5),

q̇5 − λq5 = −k−2(1 − u2)(q2 + q4 − q5) − k3(q3 − q5 + q6),

q̇6 − λq6 = 2Ne2λt p6. (9)

We have another set of twelve such similar equations for the substitution s̄1 = eλt p̄1,
s̄2 = eλt p̄2, ēk = eλt p̄3, c̄1 = eλt p̄4, c̄2 = eλt p̄5, p̄ = eλt p̄6, ξ̄1 = e−λt q̄1,
ξ̄2 = e−λt q̄2, ξ̄3 = e−λt q̄3, ξ̄4 = e−λt q̄4, ξ̄5 = e−λt q̄5 and ξ̄6 = e−λt q̄6.
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Here we subtract the equations for s̄1 from s1, s̄2 from s2, ēk from ek, c̄1 from c1, c̄2
from c2, p̄ from p, ξ̄1 from ξ1, ξ̄2 from ξ2, ξ̄3 from ξ3, ξ̄4 from ξ4, ξ̄5 from ξ5 and ξ̄6
from ξ6. Next, each subtracted equation is multiplied by an appropriate function and
then integrated from initial time (ti ) to final time (t f ).

With the help of result (8) we have the following inequalities,

1

2
(p1 − p̄1)2(t f ) + λ

t f∫

ti

(p1 − p̄1)2dt ≤ C̃3eλt f

t f∫

ti

[
|p1 − p̄1|2

+|p3 − p̄3|2
]

dt + C̃4

t f∫

ti

[
|p1 − p̄1|2 + |p4 − p̄4|2

]
dt

+C̃4

(
k−1

2A

)2
t f∫

ti

[
|q1 − q̄1|2 + |q3 − q̄3|2 + |q4 − q̄4|2

]
dt,

1

2
(p2 − p̄2)2(t f ) + λ

t f∫

ti

(p2 − p̄2)2dt ≤ C̃5eλt f

t f∫

ti

[
|p2 − p̄2|2 + |p4 − p̄4|2

]
dt

+C̃6

t f∫

ti

[
|p2 − p̄2|2 + |p5 − p̄5|2

]
dt + C̃6

(
k−2

2B

)2
t f∫

ti

[
|q2 − q̄2|2 + |q4 − q̄4|2

+|q5 − q̄5|2
]

dt,

1

2
(p3 − p̄3)2(t f ) + λ

t f∫

ti

(p3 − p̄3)2dt

≤ C̃7eλt f

t f∫

ti

[
|p1 − p̄1|2 + |p3 − p̄3|2

]
dt + C̃8

t f∫

ti

[
|p3 − p̄3|2 + |p4 − p̄4|2

]
dt

+C̃8

(
k−1

2A

)2
t f∫

ti

[
|q1 − q̄1|2 + |q3 − q̄3|2 + |q4 − q̄4|2

]
dt

+C̃9

t f∫

ti

[
|p3 − p̄3|2 + |p5 − p̄5|2

]
dt,

1

2
(p4 − p̄4)2(t f ) + λ

t f∫

ti

(p4 − p̄4)2dt

≤ ˜C10eλt f

t f∫

ti

[
|p1 − p̄1|2 + |p3 − p̄3|2 + |p4 − p̄4|2

]
dt
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+ ˜C11

t f∫

ti

[
|p4 − p̄4|2

]
dt + ˜C11

(
k−1

2A

)2
t f∫

ti

[
|q1 − q̄1|2 + |q3 − q̄3|2 + |q4 − q̄4|2

]
dt

+ ˜C12eλt f

t f∫

ti

[
|p2 − p̄2|2 + |p4 − p̄4|2

]
dt + ˜C13

t f∫

ti

[
|p5 − p̄5|2

]
dt

+ ˜C13

(
k−2

2B

)2
t f∫

ti

[
|q2 − q̄2|2 + |q4 − q̄4|2 + |q5 − q̄5|2

]
dt,

1

2
(p5 − p̄5)2(t f ) + λ

t f∫

ti

(p5 − p̄5)2dt ≤ ˜C14eλt f

t f∫

ti

[
|p2 − p̄2|2 + |p4 − p̄4|2

+|p5 − p̄5|2
]

dt + ˜C15

(
k−2

2B

)2
t f∫

ti

[
|q2 − q̄2|2 + |q4 − q̄4|2 + |q5 − q̄5|2

]
dt

+ ˜C16

t f∫

ti

[
|p5 − p̄5|2

]
dt,

1

2
(p6 − p̄6)

2(t f ) + λ

t f∫

ti

(p6 − p̄6)
2dt ≤ ˜C17

t f∫

ti

[|p5 − p̄5|2 + |p6 − p̄6|2
]

dt,

1

2
(q1 − q̄1)

2(ti ) + λ

t f∫

ti

(q1 − q̄1)
2dt ≤ ˜C18eλt f

t f∫

ti

[|q1 − q̄1|2 + |q3 − q̄3|2 + |q4 − q̄4|2
]

dt,

1

2
(q2 − q̄2)

2(ti ) + λ

t f∫

ti

(q2 − q̄2)
2dt ≤ ˜C19eλt f

t f∫

ti

[|q2 − q̄2|2 + |q4 − q̄4|2 + |q5 − q̄5|2
]

dt,

1

2
(q3 − q̄3)

2(ti ) + λ

t f∫

ti

(q3 − q̄3)
2dt ≤ ˜C20eλt f

t f∫

ti

[|q1 − q̄1|2 + |q3 − q̄3|2 + |q4 − q̄4|2
]

dt,

1

2
(q4 − q̄4)

2(ti ) + λ

t f∫

ti

(q4 − q̄4)
2dt

≤ ˜C21

(
1 +

(
k−1

2A

)2
) t f∫

ti

[|q1 − q̄1|2 + |q3 − q̄3|2 + |q4 − q̄4|2
]

dt

+ ˜C22eλt f

t f∫

ti

[|q2 − q̄2|2 + |q4 − q̄4|2 + |q5 − q̄5|2
]

dt,

1

2
(q5 − q̄5)

2(ti ) + λ

t f∫

ti

(q5 − q̄5)
2dt
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≤ ˜C23

(
1 +

(
k−2

2B

)2
) t f∫

ti

[|q2 − q̄2|2 + |q4 − q̄4|2 + |q5 − q̄5|2
]

dt

+ ˜C24

t f∫

ti

[|q3 − q̄3|2 + |q5 − q̄5|2 + |q6 − q̄6|2
]

dt

and
1

2
(q6 − q̄6)

2(ti ) + λ

t f∫

ti

(q6 − q̄6)
2dt ≤ ˜C25e2λt f

t f∫

ti

[|p6 − p̄6|2 + |q6 − q̄6|2]dt.

Here the constants C̃1 to ˜C25 depend on the coefficients and the bounds on states
and adjoints.

The above twelve inequalities are added and estimated to obtain the following
result,

1

2

[
(p1 − p̄1)

2(t f ) + (p2 − p̄2)
2(t f ) + (p3 − p̄3)

2(t f ) + (p4 − p̄4)
2(t f )

+(p5 − p̄5)
2(t f ) + (p6 − p̄6)

2(t f ) + (q1 − q̄1)
2(ti ) + (q2 − q̄2)

2(ti )

+(q3 − q̄3)
2(ti ) + (q4 − q̄4)

2(ti ) + (q5 − q̄5)
2(ti ) + (q6 − q̄6)

2(ti )
]

+λ

t f∫

ti

[
(p1 − p̄1)

2 + (p2 − p̄2)
2 + (p3 − p̄3)

2 + (p4 − p̄4)
2

+(p5 − p̄5)
2 + (p6 − p̄6)

2 + (q1 − q̄1)
2 + (q2 − q̄2)

2

+(q3 − q̄3)
2 + (q4 − q̄4)

2 + (q5 − q̄5)
2 + (q6 − q̄6)

2
]

dt

≤ (M̃1 + M̃2e2λt f )

t f∫

ti

[
(p1 − p̄1)

2 + (p2 − p̄2)
2 + (p3 − p̄3)

2

+(p4 − p̄4)
2 + (p5 − p̄5)

2 + (p6 − p̄6)
2 + (q1 − q̄1)

2 + (q2 − q̄2)
2

+(q3 − q̄3)
2 + (q4 − q̄4)

2 + (q5 − q̄5)
2 + (q6 − q̄6)

2
]

dt, (10)

where M̃1 and M̃2 depend on the coefficients and the bounds of p1, p2, p3, p4, p5, p6,

q1, q2, q3, q4, q5 and q6.
From the above we have,

(λ − M̃1 − M̃2e2λt f )

t f∫

ti

[
(p1 − p̄1)

2 + (p2 − p̄2)
2

+(p3 − p̄3)
2 + (p4 − p̄4)

2 + (p5 − p̄5)
2 + (p6 − p̄6)

2

+(q1 − q̄1)
2 + (q2 − q̄2)

2 + (q3 − q̄3)
2 + (q4 − q̄4)

2

+(q5 − q̄5)
2 + (q6 − q̄6)

2
]

dt ≤ 0. (11)
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If we choose λ such that λ > M̃1 + M̃2 and t f < 1
2λ

ln( λ−M̃1

M̃2
), then p1 = p̄1, p2 =

p̄2, p3 = p̄3, p4 = p̄4, p5 = p̄5, p6 = p̄6, q1 = q̄1, q2 = q̄2, q3 = q̄3, q4 =
q̄4, q5 = q̄5 and q6 = q̄6.

Hence we can conclude that the solution is unique for the time interval [ti , t f ].

4 Numerical simulation

The dynamics of the double substrate enzymatic reaction system have been analyzed
using numerical methods. The concentration of substances s1, s2, ek, c1, c2 and p are
observed with time in the presence and absence of the control theoretic approach.
Here, it may be mentioned that in the system dynamics of enzymatic reaction, first
and second steps are reversible and the final stage is irreversible. We analyze the
dynamics of the substances for a time period of initial 0.75 h i.e., 45 minutes during
which the reaction system progresses continuously as a normal mode. Here, control
parameters have been applied in the successive backward reversible stages to observe
the effect of concentration of substances with time for significant results. For the
better understanding of the control measures on the reaction dynamics, the control
variables are introduced during a time period of 30 minutes after completion of initial
reaction by 15 minutes. So, two sets of concentration profiles are compared. The
kinetic profile diagrams have been analyzed considering the parameter values as k1 =
5, k2 = 5, k3 = 5, k−1 = 1, k−2 = 1. Unit of the parameters k1 and k2 is considered
as (moles/l)−1 h−1 and that of k3, k−1 and k−2 is h−1. Numerical values of model
parameters, applied in the numerical analysis, have been collected from Alicea [11]
and Varadharajan [12].

Figures 1 and 2 represent the concentration profiles of substrates, enzyme, com-
plexes and product of the system dynamics in the absence of the control parameters.
It is observed from Fig. 1a that initially rate of consumption of s1 is higher. After a
certain period of time (t ∼= 0.75 h), it has been almost consumed. As the reaction
between enzyme and first substrate (S1) is faster than that of enzyme and second sub-
strate (S2), S2 binds with the first complex (C1) through the multiple active sites of the
enzyme. Due to this reason s2 takes more time than s1 for completion of consumption
(Fig. 1b). After 45 minutes of reaction time, the concentration of substrates s1 and
s2 are observed as 0.0283 moles/l and 0.4783 moles/l respectively. Figure 1c repre-
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Fig. 1 Normalized concentration profile of the substrates and enzyme as a function of time for various
values of reaction parameters (without control)
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Fig. 2 Normalized concentration profile of the complexes and product as a function of time for various
values of reaction parameters (without control)
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Fig. 3 Normalized concentration profile of the substrates and enzyme as a function of time for various
values of reaction parameters (with control)
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Fig. 4 Normalized concentration profile of the complexes and product as a function of time for various
values of reaction parameters (with control)

sents the concentration profile diagram of enzyme. After the same time interval, the
concentration of enzyme is found to be 3.667 moles/l.

It is inferred from Fig. 2d that, the concentration of the first complex c1 increases
gradually form its initial value and reaches a maximum value at a definite time interval.
After that, it decreases as it binds with the second substrate to form the second complex.
Again the concentration of the second complex c2 increases (Fig. 2e) as it produces
as soon as the first complex is formed. Figure 2f represents the concentration profile
of the product p and it is clear from the figure that the product formation continues
from the second complex.

Now, control parameters for changing reaction operators have a significant impact
on the system dynamics. Figures 3 and 4 characterize the change in concentrations of
the substances of the reaction system for a time period of 30 minutes during which a
control is applied to the system. Here we see that by applying control approach, both the
substrates are consumed within a short period of time as described in Fig. 3ac and 3bc.
This is due to the fact that applying control measures in the backward reversible
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stages indicate prevention of backward reactions. As a result, rate of consumption of
substrates are higher. From Fig. 4, it is understandable that the complex concentrations
are also decreasing with a higher rate, so that conversion of c1 to c2 requires less time
and product formation from the complex c2 indicates time economization. Thus by
applying control measures, quantization of product is favorable within a very short
period of time.

5 Discussion

In this research article, we have presented a basic mathematical model of enzyme
kinetic reaction with two substrates and a single enzyme based on the control theo-
retic approach. The dynamics of the reaction system depends mainly on the rate of
forward reaction, rate of backward reaction and finally rate of formation of product.
By implying theoretical control approach, the stability of the complex put together the
reaction in such a fashion that the system moves faster toward forward direction than
backward. In this way, analysis shows that the time for product formation is minimum
and cost effective, when there is no decomposition of enzyme-substrate complex to
unmodified substrate.

In our analytical study, Pontryagin Minimum Principle is used with the help of
Hamiltonian for this purpose. Analytically we have seen that this optimal control
variable is unique and derives the condition for which the system has its unique optimal
control variable. Our numerical findings indicate that, introducing control measures in
the enzymatic system dynamics, reaction operators are important tools for prevention
of backward reversible reaction.

6 Conclusion

In conclusion, we suggest that the proposed model of enzyme kinetics offers flexibil-
ity in describing the dynamic reversible change to irreversibility of enzyme substrate
reaction. Furthermore, control parameters for changing reaction operators have a sig-
nificant impact on the system dynamics. As such, the model is more functional and
applicable to a wider class of enzymatic reaction systems. The parameters of the model
correlate directly with the physical factors that significantly effect reaction dynamics.
This way, the model allows more accurate a priori prediction of system kinetics for
nonstandard reaction dynamics, both through analytical analysis and using numerical
simulation.
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